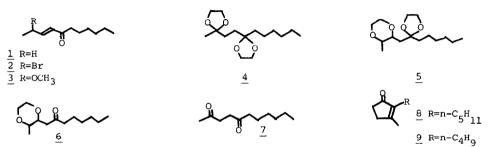
A SIMPLE SYNTHESIS OF DIHYDROJASMONE+


Shing-Hou Liu*

Life Sciences Division, SRI International Menlo Park, California 94025 USA

Abstract: Acetalization of a γ -substituted α,β -unsaturated ketone, followed by acid hydrolysis gave a cyclopentenone.

It is well-known that acid-catalyzed acetalization of alicyclic α,β -unsaturated ketones proceeds with concomitant migration of the double bond. If acyclic Y-alkoxy enones undergo double bond isomerization during acetalization, the product should be 1,4-diacetals, valuable precursors to 1.4-diketones and cyclopentenones. This communication reports the utility of such an acetalization process in a synthesis of dihydrojasmone 82.

Bromination³ (1 equiv. NBS, CCl₄ reflux, 1.5 h) of 3-undecen-5-one $\frac{1}{4}$ gave the bromo enone 2^5 (95% yield). Addition of 2 to a mixture of anhydrous cupric bromide⁶ (2 equiv.) and pyridine (5 equiv.) in $MeOH^7$ at -30° resulted in a green mixture which was then stored at room temperature (14 h) to give γ -methoxy enone 3^5 in 80% yield. Acetalization (ethylene glycol, toluene or benzene, TsOH, 20 h) of 3 afforded 1,4-diacetal $\frac{4}{9}$, as expected. However, the product was contaminated with another acetal (20-50%) which was difficult to separate. The by-product was eventually identified as 5 through its hydrolysis product 6^5 . Thus, the mixture of acetals was hydrolyzed (0.5 N HCl, EtOH, rt) and the resulting ketones containing the well-known undecan-2,5dione 7² were treated with alkali to give rise to a separable mixture of dihydrojasmone 8 and dioxane ketone 6^5 . We anticipated that the formation of 6 could be made reversible, and indeed 6 was converted into dione 7 in 75% yield when refluxed with conc. HCl in benzene for 18 h.

+ Dedicated to Professor Yau-Tang Lin on the occasion of his 70th birthday.

^{*} Present Address: Organic Chemicals Division, SCM Corporation, P. O. Box 389, Jacksonville, Florida 32201 USA

Acetalization of the bromo enone 2 afforded exclusively the dioxane acetal 5 which arose presumably from displacement of bromide by ethylene glycol, followed by a Michael-type reaction and acetalization of the intermediate ketone 6. Acetal 5 was refluxed in a solution of acetic acid and conc. hydrochloric acid (1:1) to give dihydrojasmone 8 in 45% overall yield from enone 1. Dione 7 was shown to be the initial product by GC analysis and was isolable. The acid-catalyzed aldol condensation of dione 7 yielding dihydrojasmone 8 is rarely documented.

Similarly, dihydrocinerone 9^8 was prepared from 3-decen-5-one in 40% overall yield.

The facile formation of 2,3-disubstituted dioxane derivatives in the enone \rightarrow diketone transformation may find use in the syntheses of heterocyclic systems.

Acknowledgement: The author thanks Drs. J. M. Muchowski, J. E. McMurry and T. L. Ho for helpful discussions and Takeshi Nakai and Eiji Wada for sending spectra of dihydrojasmone,

References and Notes

- See, for example, J. A. Marshall, M. T. Pike and R. D. Carroll, <u>J. Org. Chem.</u>, <u>31</u>, 2933 (1966).
- 2. T. L. Ho, Synth. Commun., 4, 265 (1974), ibid., 11, 7 (1981).
- cf. C. Djerassi, G. Rosenkranz, J. Romo, St. Kaufmann and J. Pataki, J. Amer. Chem. Soc., 72, 4534 (1950).
- 4. I. G. Tishchenko, V. N. Sytin and I. F. Revinskii, Zh. Org. Khim., 13, 1154 (1977); C. A. 87, 102095y (1977). Enone 1 was also conveniently prepared from propional dehyde and dimethyl (2-oxooctyl) phosphonate (NaH, THF, 20°, 2h) in 87% yield, bp 70°/1 mmHg.
- 5. Bromo enone 2, IR (film) $1680,1635 \text{ cm}^{-1}$, NMR (CDCl₃) δ 1.8 (3H, d,J=6 Hz), 4.73 (1H,m), 6.17 (1H,d,J=16 Hz), 6.9 (1H,dd,J=16,8 Hz); γ -methoxy enone 3, bp 80- $93^{\circ}/0.6$ mmHg, IR (film) $1685,1640 \text{ cm}^{-1}$, NMR (CDCl₃) δ 1.27 (3H,d,J=6.5 Hz), 3.3 (3H,s), 3.93 (1H,m), 6.2 (1H,d,J=16 Hz), 6.72 (1H,dd,J=16,6 Hz); diacetal 4, NMR (CDCl₃) δ 1.68 (4H,s),3.82 (8H,s); dioxane ketone 6, bp 89- $90^{\circ}/0.1$ mmHg, IR(film) 1710, 1110 (strong) cm⁻¹, NMR (CDCl₃) δ 1.08 (3H,d,J=6 Hz),3.67 (4H,s), 3.2-4.2 (2H,m), HRMS m/z calc. for $C_{13}H_{24}O_{3}$: 228.1725; found 228.1700.
- 6. G. W. Watt, P. S. Gentile and E. P. Helvenston, <u>J. Amer. Chem. Soc.</u>, <u>77</u>, 2752 (1955).
- 7. P. B. Sollman and R. M. Dodson, J. Org. Chem., 26, 4180 (1961).
- 8. F. B. LaForge and W. F. Barthel, J. Org. Chem., 10, 222 (1945).

(Received in USA 20 September 1982)